eProceedings of Engineering
Vol 8, No 5 (2021): Oktober 2021

Prediksi Retweet Menggunakan Metode Bernoulli Dan Gaussian Naive Bayes Di Media Sosial Twitter Dengan Topik Vaksinasi Covid-19

Ika Puspita Dewi (Telkom University)
Jondri Jondri (Telkom University)
Kemas Muslim Lhaksmana (Telkom University)



Article Info

Publish Date
01 Oct 2021

Abstract

Media sosial twitter adalah media sosial internasional yang mengizinkan pengguna untuk berbagi pesan atau biasa disebut tweet dengan maksimal 280 karakter per-tweet, dapat dilakukan secara publik maupun pribadi dengan pengguna lain. Twitter menyediakan berbagai informasi yang diperlukan mulai dari informasi kesehatan, pendidikan, olahraga, politik, makanan, dan keuangan, disediakan pula aktivitas retweet untuk menyebarkan kembali tweet orang lain sehingga penyebaran informasi menjadi lebih luas. Tujuan penelitian yaitu membangun sistem yang dapat mempredisksi penyebaran informasi di twitter menggunakan metode Bernulli dan Gaussian Naive Bayes yang menerapkan beberapa fitur seperti Network Feature, Content Similarity, dan Content Based Feature. Hasil penelitian yang didapat dengan menggunakan k-fold cross validation 10 yaitu menunjukkan Bernoulli Naïve bayes lebih unggul dibanding metode Gaussian Naïve Bayes dengan perolehan rata-rata f1-score Benoulli Naïve Bayes yaitu untuk skenario pertama sebesar 60.06% (f1-score), skenario kedua sebesar 60.08% (f1-score), dan skenario ketiga sebesar 60.09% (f1-score). Kata kunci : Penyebaran Informasi, Twitter, Content Similarity, Naïve Bayes

Copyrights © 2021






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...