Journal of Data Science and Software Engineering
Vol 3 No 01 (2022)

SOLUSI KLASIFIKASI DATA TIDAK SEIMBANG DENGAN PENDEKATAN BERBASIS COMBINATION OF OVERSAMPLING AND UNDERSAMPLING

Riza Susanto Banner (Student)
Irwan Budiman (Unknown)
Dodon Turianto Nugrahadi (Unknown)
M. Reza Faisal (Unknown)
Friska Abadi (Unknown)



Article Info

Publish Date
03 Oct 2022

Abstract

This study applies the Combination of Oversampling and Undersampling method to deal with class imbalances. Researchers do Preprocessing to normalize the attributes used for prediction, then divide the training data and testing data. Researchers resampled unbalanced data using Oversampling, Undersampling and a combination of Oversampling and Undersampling. The results of the classification with the experimental data class balancing approach, the best classification performance is the combination of Oversampling and Undersampling classified by the k-Nearest Neighbor (KNN) method with an accuracy of 0.8672; sensitivity of 0.9000; specificity of 0.3750; and AUC of 0.6651042. Classification with Oversampling has performance results, namely accuracy of 0.875; sensitivity of 0.9250; specificity of 0.1250; and AUC of 0.6078125, while Undersampling classification has classification performance, namely accuracy of 0.3438; sensitivity of 0.33333; specificity of 0.50000; and AUC of 0.3645833.

Copyrights © 2022






Journal Info

Abbrev

integer

Publisher

Subject

Computer Science & IT

Description

Journal of Data Science and Software Engineering adalah jurnal yang dikelola oleh program studi Ilmu Komputer Universitas Lambung Mangkurat untuk mempublikasikan artikel ilmiah mahasiswa tugas akhir. Terbit tiga kali dalam ...