Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 7 No. 2 (2023): Research Article, Volume 7 Issue 2 April, 2023

Analysis of the Decision Tree Method for Determining Interest in Prospective Student College

Maizura, Safrina (Unknown)
Sihombing, Volvo (Unknown)
Dar, Muhammad Halmi (Unknown)



Article Info

Publish Date
07 Apr 2023

Abstract

Education is learning science, skills that are carried out by a person or a group of people. The education level starts from Elementary School Education, Junior High School and High School. Apart from that, the highest level of education is college. Lectures are further education carried out by people to gain knowledge and degrees. In college education everyone can choose their respective majors, according to their wishes and desires. With college education, there will be many prospective students who will go to college. But the interest of prospective students to study varies, there are some prospective students who want to study in public and there are some who want to study privately. Therefore the author will make research about prospective students' interest in college. This study aims to see the college interest of prospective students. For this research a data classification of prospective students will be carried out using the Decision Tree method. For this research stage using the Decision Tree method, the first is data analysis, then data preprocessing, then the Decision Tree method design and finally data mining testing. The classification was carried out using the Decision Tree method using 65 prospective student data. From the results of the classification using the Decision Tree method, the results of the Classification of prospective students who are interested in studying are 46 prospective students. The classification results above show that many prospective students are interested in studying.

Copyrights © 2023






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...