Knowledge Engineering and Data Science
Vol 5, No 2 (2022)

Performance of Ensemble Classification for Agricultural and Biological Science Journals with Scopus Index

Nastiti Susetyo Fanany Putri (Universitas Negeri Malang)
Aji Prasetya Wibawa (Universitas Negeri Malang)
Harits Ar Rosyid (Universitas Negeri Malang)
Agung Bella Putra Utama (Universitas Negeri Malang)
Wako Uriu (Chikushi Jogakuen University)



Article Info

Publish Date
30 Dec 2022

Abstract

The ensemble method is considered an advanced method in both prediction and classification. The application of this method is estimated to have a more optimal output than the previous classification method. This article aims to determine the ensemble's performance to classify journal quartiles. The subject of agriculture was chosen because Indonesia is an agricultural country, and the interest of researchers in this field shows a positive response. The data is downloaded through the Scimago Journal and Country Rank with the accumulation in 2020. Labels have four classes: Q1, Q2, Q3, and Q4. The ensemble applied is Boosting and Bagging with Decision Tree (DT) and Gaussian Naïve Bayes (GNB) algorithms compiled from 2144 instances. The Boosting meta-ensembles used are Adaboost and XGBoost. From this study, the Bagging Decision Tree has the highest accuracy score at 71.36, followed by XGBoost Decision Tree with 69.51. The third is XGBoost Gaussian Naïve Bayes with 68.82, Adaboost Decision Tree with 60.42, Adaboost Gaussian Naïve Bayes with 58.2, and Bagging Gaussian Naïve Bayes with 56.12 results. This paper shows that the Bagging Decision Tree is the ensemble method that works optimally in this subject classification. This result suggests that the ensemble method can still fail to produce an ideal outcome that approaches the SJR system.

Copyrights © 2022






Journal Info

Abbrev

keds

Publisher

Subject

Computer Science & IT Engineering

Description

Knowledge Engineering and Data Science (2597-4637), KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base ...