Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK)
2023: SNESTIK III

Grey Level Co-Occurrence Matrix (GLCM) & Hybrid Klasifikasi untuk Mendeteksi Kerusakan Jalan Aspal

Ika Maylani (Institut Teknologi Insan Cendekia Mandiri)
Virginia Wahyu Ambarwati (Unknown)
Bismar Wasykuru (Unknown)
Alqaroni Alqaroni (Unknown)
Firnanda Tri Buana Kusuma Wati (Unknown)



Article Info

Publish Date
22 Apr 2023

Abstract

The importance of detecting damage to the asphalt road surface is to minimize the occurrence of accidents caused by uneven road surfaces. Image extraction can be used to detect road surface damage. GLCM is a statistical method in which statistical calculations use the distribution of gray degrees (histograms) by measuring the level of contrast, granularity, and roughness of an area from the neighboring pixels in the image. The classification process uses a hybrid classification, which combines the SVM method with kernel changes and KNN with changes in k=3, 4, 5, 7 and 9 tracts.

Copyrights © 2023






Journal Info

Abbrev

snestik

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK) merupakan media publikasi atas makalah yang telah dikirimkan pada kegiatan seminar. Prosiding ini diterbitkan secara daring (media online) oleh Institut Teknologi Adhi Tama Surabaya setiap tahun mengiringi ...