Sinergi
Vol 27, No 2 (2023)

Model predictive control with exogenous auto-regressive model to improve performance in the CO2 removal

Abdul Wahid (Process Systems Engineering Lab., Dept. of Chemical Engineering, Faculty of Engineering, Universitas Indonesia)
Nisa Methilda Andriana Rodiman (Process Systems Engineering Lab., Dept. of Chemical Engineering, Faculty of Engineering, Universitas Indonesia)
Alifia Rahma (Process Systems Engineering Lab., Dept. of Chemical Engineering, Faculty of Engineering, Universitas Indonesia)
Arshad Ahmad (Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia)
Andri Kapuji Kaharian (INEOS Aromatics)



Article Info

Publish Date
27 Apr 2023

Abstract

Model predictive control (MPC) is used in the CO2 removal process in the Subang field to improve its control performance. MPC is used to maintain the CO2 concentration at the sweet gas output by controlling the feed gas pressure (PIC-1101), makeup water flow rate (FIC-1102), and amine flow rate (FIC-1103). The empirical model applied to MPC to represent the process model is the auto-regressive exogenous (ARX) model. The ARX model is compared with the first order plus dead time (FOPDT) model based on the root mean square error (RMSE) between the model and the actual process, then MPC parameters are tuned which include sampling time (T), prediction horizon (P) and control horizon (M) to control for the three variables. Improved control performance is measured based on the integral square error (ISE). The results show that the ARX model is the best model for the CO2 removal process with an RMSE value of 35%-91% smaller than the FOPDT model. The optimal control parameters Prediction Horizon (P), Control Horizon (M) and Sampling Time (T) in the CO2 removal process are 75, 25 and 1 on PIC-1101, 25, 10 and 1 on FIC-1102, and 30, 25 and 1 on FIC-1103. The MPC-ARX (MPC using ARX model) can improve the control performance of 33% in the servo control and 6-56% on the regulatory control. However, not all of them showed an increase in control performance improvement from previous studies even though they had used the best model (ARX). This is due to the MPC parameter setting that is not yet appropriate, so it needs to be retuning.

Copyrights © 2023






Journal Info

Abbrev

sinergi

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

SINERGI is a peer-reviewed international journal published three times a year in February, June, and October. The journal is published by Faculty of Engineering, Universitas Mercu Buana. Each publication contains articles comprising high quality theoretical and empirical original research papers, ...