JURNAL KIMIA SAINS DAN APLIKASI
Vol 26, No 2 (2023): Volume 26 Issue 2 Year 2023

A New Combination Method of N-doped TiO2 Nanoparticles Synthesis for Heavy Metal Ions Cr(VI) Photoreduction Applications

Diana Vanda Wellia (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang|Andalas University|Indonesia)
M. Rafli Habibillah (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang|Andalas University|Indonesia)
Atika Syafawi (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang|Andalas University|Indonesia)
Rizka Rahmadini (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang|Andalas University|Indonesia)
Rahmayeni Rahmayeni (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang|Andalas University|Indonesia)
Nurul Pratiwi (Department of Chemistry, Faculty of Science and Technology, Jambi University, Jambi|Jambi University|Indonesia)



Article Info

Publish Date
31 Mar 2023

Abstract

Through a combination of biosynthetic and hydrothermal methods, N-doped TiO2 photocatalyst has been successfully synthesized using various concentrations of ammonia as a nitrogen source, namely 10% w/w (NTO10), 20% w/w (NTO20), 35% w/w (NTO35), and 50% w/w (NTO50). The synthesis of TiO2 was conducted using Aloe vera (L) Burm F. rind extract as a natural capping agent via the biosynthetic method, followed by a nitrogen doping process via the hydrothermal method. The X-ray Diffraction (XRD) analysis revealed that all phases were anatase. According to the results of the UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS) analysis using the Tauc-Plot method, all N-doped TiO2 samples showed a decrease in the energy gap compared to the TO sample. This indicates that the doping of TiO2 using nitrogen has been successfully doped into TiO2. The photocatalytic activity of N-doped TiO2 was evaluated for the photoreduction of the Cr(VI) model pollutant using a 24-watt LED lamp as a visible light source for 120 minutes. The results indicate that the NTO35 is the best-prepared N-doped TiO2, which showed a reduced rate for the Cr (VI) model pollutant of 50.88%, or two times greater than that of undoped TiO2.

Copyrights © 2023






Journal Info

Abbrev

ksa

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry Engineering

Description

urnal Kimia Sains dan Aplikasi (p-ISSN: 1410-8917) and e-ISSN: 2597-9914) is published by Department of Chemistry, Diponegoro University. This journal is published four times per year and publishes research, review and short communication in field of ...