IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 12, No 2: June 2023

Query expansion based on modified Concept2vec model using resource description framework knowledge graphs

Sarah Dahir (Moulay Ismail University of Meknes)
Abderrahim El Qadi (Mohammed V University in Rabat)



Article Info

Publish Date
01 Jun 2023

Abstract

The enormous size of the web and the vagueness of the terms used to formulate queries still pose a huge problem in achieving user satisfaction. To solve this problem, queries need to be disambiguated based on their context. One well-known technique for enhancing the effectiveness of information retrieval (IR) is query expansion (QE). It reformulates the initial query by adding similar terms that help in retrieving more relevant results. In this paper, we propose a new QE semantic approach based on the modified Concept2vec model using linked data. The novelty of our work is the use of query-dependent linked data from DBpedia as training data for the Concept2vec skip-gram model. We considered only the top feedback documents, and we did not use them directly to generate embeddings; we used their interlinked data instead. Also, we used the linked data attributes that have a long value, e.g., “dbo: abstract”, as training data for neural network models, and, we extracted from them the valuable concepts for QE. Our experiments on the Associated Press collection dataset showed that retrieval effectiveness can be much improved when a skip-gram model is used along with a DBpedia feature. Also, we demonstrated significant improvements compared to other approaches.

Copyrights © 2023






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...