Xplore: Journal of Statistics
Vol. 2 No. 2 (2018): 31 Agustus 2018

PEMODELAN SEMIPARAMETRIK STATISTICAL DOWNSCALING UNTUK MENDUGA CURAH HUJAN BULANAN DI INDRAMAYU

Akbar Rizki (Department of Statistics, IPB)
Abdul Aziz Nurussadad (Badan Informasi Geospasial (BIG))



Article Info

Publish Date
31 Aug 2018

Abstract

Semiparametric statistical downscaling (SD) model is a statistical model which consists of parametric and non-parametric functional relationship between local scale and global scale variable. This study used rainfall intensity in Indramayu as local scale variable and Global Precipitation Climatology Project (GPCP) precipitation as global scale variable. GPCP precipitation data have multicollinearity, therefore they were reduced by principal component analysis. Eight principal components which have been selected then used as the prediktors and rainfall intensity in Indramayu as the response. Semiparametric SD model was used to predict the rainfall intensity in the district of Indramayu. The semiparametric model developed by mixed model approach where the nonparametric relationship is represented using spline with truncated power basis. Linier semiparametric model is the best model to estimate monthly rainfall in indramayu district. The model performance evaluated by RMSEP (root mean square error prediction) and (coefficient of determination). The result shows that the best model have values of RMSEP and are 61.64 and 71%.

Copyrights © 2018






Journal Info

Abbrev

xplore

Publisher

Subject

Decision Sciences, Operations Research & Management Engineering Mathematics

Description

Xplore: Journal of Statistics diterbitkan berkala 3 (tiga) kali dalam setahun yang memuat tulisan ilmiah yang berhubungan dengan bidang statistika. Artikel yang dimuat berupa hasil penelitian atau kajian pustaka dalam bidang statistika dan atau penerapannya. ISSN: 2302-5751 Mulai Desember 2018, ...