Xplore: Journal of Statistics
Vol. 10 No. 3 (2021)

Perbandingan ARIMA dan Artificial Neural Networks dalam Peramalan Jumlah Positif Covid-19 Di DKI Jakarta

Tri Wahyuni (Departemen Statistika, IPB University)
Indahwati Indahwati (Departemen Statistika, IPB University)
Kusman Sadik (Departemen Statistika, IPB University)



Article Info

Publish Date
30 Sep 2021

Abstract

DKI Jakarta is the center of the spread of Covid-19. This is indicated by the higher cumulative number of Covid-19 positive in DKI Jakarta compared to other provinces. The high number of cases in DKI Jakarta is a concern for all groups, so it is necessary to do forecasting to predict the number of Covid-19 positive in the next period. Accurate forecasting is needed to get better results. This study compares the Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) methods in predicting the number of Covid-19 positive in DKI Jakarta. Forecasting accuracy is calculated using the value of Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and correlation. The results show that the best model for forecasting the number of Covid-19 positive in DKI Jakarta is ARIMA(0,1,1) with drift, with a MAPE value of 15.748, an RMSE of 268.808, and the correlation between the forecast value and the actual value of 0.845. Forecasting using ARIMA(0,1,1) with drift and BP(3,10,1) models produces the best forecast for the long forecasting period of the next six weeks.

Copyrights © 2021






Journal Info

Abbrev

xplore

Publisher

Subject

Decision Sciences, Operations Research & Management Engineering Mathematics

Description

Xplore: Journal of Statistics diterbitkan berkala 3 (tiga) kali dalam setahun yang memuat tulisan ilmiah yang berhubungan dengan bidang statistika. Artikel yang dimuat berupa hasil penelitian atau kajian pustaka dalam bidang statistika dan atau penerapannya. ISSN: 2302-5751 Mulai Desember 2018, ...