Xplore: Journal of Statistics
Vol. 11 No. 2 (2022):

Kajian Metode Pohon Model Logistik (Logistic Model Tree) dengan Penanganan Ketakseimbangan Data

Akmala Firdausi (Department of Statistics, IPB University)
Aam Alamudi (Department of Statistics, IPB University)
Kusman Sadik (Department of Statistics, IPB University)



Article Info

Publish Date
31 May 2022

Abstract

Logistic model tree is a nonparametric modelling method that combines decision tree with linear logistic regression. Logistic model tree handles multicollinearity well, but is not immune to problems that arise due to data imbalance. This study was carried to compare the performance of undersampling, SMOTE, and ROSE in handling imbalanced data when used in tandem with logistic model tree. The data used in the simulation was obtained by generating random numbers following the Bernoulli distribution as the response variable and the Bivariate Normal distribution as the explanatory variables, based on five different imbalance levels. Comparisons done on the AUC value showed that logistic model trees built with methods to handle imbalanced data performed better than logistic model trees built without applying any such method on every level of tested data imbalance in classifying objects. Among those, logistic model trees built with ROSE performed better than logistic model trees built with other methods. On datasets with low level of imbalance, the performance of logistic model trees built with ROSE and undersampling do not significantly differ.

Copyrights © 2022






Journal Info

Abbrev

xplore

Publisher

Subject

Decision Sciences, Operations Research & Management Engineering Mathematics

Description

Xplore: Journal of Statistics diterbitkan berkala 3 (tiga) kali dalam setahun yang memuat tulisan ilmiah yang berhubungan dengan bidang statistika. Artikel yang dimuat berupa hasil penelitian atau kajian pustaka dalam bidang statistika dan atau penerapannya. ISSN: 2302-5751 Mulai Desember 2018, ...