Xplore: Journal of Statistics
Vol. 11 No. 3 (2022): Vol. 11 No. 3 (2022)

Perbandingan Kinerja Regresi Conway-Maxwell-Poisson dan Poisson-Tweedie dalam Mengatasi Overdispersi Melalui Data Simulasi

Ahmad Rifai Nasution (Department of Statistics IPB University)
Kusman Sadik (Unknown)
Akbar Rizki (Unknown)



Article Info

Publish Date
30 Sep 2022

Abstract

Poisson regression is a standard method to model count data. Modeling count data frequently causes overdispersion which means that Poisson regression is less precise to model it as Poisson regression has the assumption of equidispersion. Overdispersion can be overcome by using Conway-Maxwell-Poisson (COM-Poisson) and Poisson Tweedie (Poisson-Tw) regression. The best model is determined based on the lowest value of RMSE, absolute bias, variance of parameter estimator, AIC, and BIC. This research uses simulation data. The response variable of simulation data is generated to follow Generalized Poisson distribution with combinations of and The result of simulation study shows that COM-Poisson and Compound Poisson-Tw are the alternatives to model overdispersed count data, but COM-Poisson is better to overcome overdispersion with higher dispersion parameter.

Copyrights © 2022






Journal Info

Abbrev

xplore

Publisher

Subject

Decision Sciences, Operations Research & Management Engineering Mathematics

Description

Xplore: Journal of Statistics diterbitkan berkala 3 (tiga) kali dalam setahun yang memuat tulisan ilmiah yang berhubungan dengan bidang statistika. Artikel yang dimuat berupa hasil penelitian atau kajian pustaka dalam bidang statistika dan atau penerapannya. ISSN: 2302-5751 Mulai Desember 2018, ...