KUBIK: Jurnal Publikasi Ilmiah Matematika
Vol 7, No 2 (2022): KUBIK: Jurnal Publikasi Ilmiah Matematika

Perbandingan Metode Random Forest dan Naïve Bayes dalam Email Spam Filtering

Maria Anita (Unknown)
Bambang Susanto (Universitas Kristen Satya Wacana Salatiga)
Lenox Larwuy (Universitas Kristen Satya Wacana Salatiga)



Article Info

Publish Date
05 Jun 2023

Abstract

Email is an important tool not only for communicating and transferring files but also it can be used for advertising media over the Internet. Since the increase in email user numbers, many users send viruses, fraud, and even pornography contained emails. Those kinds of emails were called spam, where unexpected emails sent in bulk. Many email users are annoyed by the amount of time spent deleting individual spam messages. This study provides a comparison between the Random Forest and Naïve Bayes classification methods for email spam predicting. It aims for searching the most accurate method. The data used in this study is an email dataset totaling 2607 data with two variables, namely the body variable (which shows the contents of the email) and the label variable (which shows labeling) where 1 indicates spam and 0 indicates not spam. From the test result using the confusion matrix, it is known that the random forest method has the highest accuracy value, namely 98%, and Naïve Bayes 73%.

Copyrights © 2022






Journal Info

Abbrev

kubik

Publisher

Subject

Computer Science & IT Economics, Econometrics & Finance Mathematics

Description

Fuzzy Systems and its Applications Geometry Theories and its Applications Graph Theories and its Applications Real Analysis and its Applications Operation Research and its Applications Statistical Theories and its Applications Dinamical Systems and its Applications Mathematics Modeling and its ...