Jurnal Rekayasa elektrika
Vol 12, No 3 (2016)

Penerapan Metode Monte-Carlo untuk Analisis Toleransi Perubahan Nilai Komponen Terhadap Kinerja Osilator Frekuensi 2,3 GHz

Teguh Firmansyah (Teknik Elektro. Universitas Sultan Ageng Tirtayasa.)
Gunawan Wibisono (Jurusan Teknik Elektro. Fakultas Teknik. Universitas Indonesia.)



Article Info

Publish Date
28 Jan 2017

Abstract

In telecommunications equipment, an oscillator has a function to generate a carrier signal. As the carrier signal, a high stability performance is required. The frequency shift caused by component tolerances. In this research, a Monte-Carlo method was used to analyze a component tolerance on the performance of the oscillator at a frequency 2.3 GHz. A simulation was performed by software Advance Design System (ADS). In this research, the iterations were carried out as many as 212 times with tolerance component values by 10%. The analyzed performance consists of a fundamental frequency shift, a phase noise, the value of power fundamental, and a harmonic power. Meanwhile, the oscillator has a structure of bias BJT common base-bias BFR183 with Vcc = 20 V, Vce = 8.2 V and Ic = 15 mA and a dielectric resonator as a resonator. The oscillator has a fundamental frequency 2.3 GHz, phase noise -135.6 dBc / Hz, power fundamental 10.8 dBm, and harmonic power -11.2 dBm. The simulation results showed that the oscillator has a good performance with a high degree of stability on a fundamental frequency by 73%, stability phase noise 100%, stability power fundamental 64%, and stability harmonic power 61%. This simulation has a confidence level of 95.4%, an error ± 3%, and the estimation accuracy 95%.

Copyrights © 2016






Journal Info

Abbrev

JRE

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Energy Engineering

Description

The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI ...