PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic
Vol 11 No 1 (2023): March 2023

Sentiment Analysis of Sentence-Level using Dependency Embedding and Pre-trained BERT Model

Fariska Zakhralativa Ruskanda (Institut Teknologi Bandung)
Stefanus Stanley Yoga Setiawan (Institut Teknologi Bandung)
Nadya Aditama (Institut Teknologi Bandung)
Masayu Leylia Khodra (Institut Teknologi Bandung)



Article Info

Publish Date
31 Mar 2023

Abstract

Sentiment analysis is a valuable field of research in NLP with many applications. Dependency tree is one of the language features that can be utilized in this field. Dependency embedding, as one of the semantic representations of a sentence, has shown to provide more significant results compared to other embeddings, which makes it a potential way to improve the performance of sentiment analysis tasks. This study aimed to investigate the effect of dependency embedding on sentence-level sentiment analysis through experimental research. The study replaced the Vocabulary Graph embedding in the VGCN-BERT sentiment classification system architecture with several dependency embedding representations, including word vector, context vector, average of word and context vectors, weighting on word and context vectors, and merging of word and context vectors. The experiments were conducted on two datasets, SST-2 and CoLA, with more than 19 thousand labeled sentiment sentences. The results indicated that dependency embedding can enhance the performance of sentiment analysis at the sentence level.

Copyrights © 2023






Journal Info

Abbrev

piksel

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal PIKSEL diterbitkan oleh Universitas Islam 45 Bekasi untuk mewadahi hasil penelitian di bidang komputer dan informatika. Jurnal ini pertama kali diterbitkan pada tahun 2013 dengan masa terbit 2 kali dalam setahun yaitu pada bulan Januari dan September. Mulai tahun 2014, Jurnal PIKSEL mengalami ...