Buletin GAW Bariri ( BGB)
Vol 4 No 1 (2023): BULETIN GAW BARIRI

Prediksi Harian Suhu Udara Permukaan dengan Jaringan Syaraf Tiruan : Studi Kasus di Kawasan perkotaan dan Pesisir Jakarta, Indonesia

Richard Mahendra Putra (Pusat Meteorologi Penerbangan, Badan Meteorologi Klimatologi dan Geofisika, Jakarta Pusat, DKI Jakarta, 10610)
Eka Fibriantika (Pusat Meteorologi Penerbangan, Badan Meteorologi Klimatologi dan Geofisika, Jakarta Pusat, DKI Jakarta, 10610)
Yetti Kusumayanti (Pusat Meteorologi Penerbangan, Badan Meteorologi Klimatologi dan Geofisika, Jakarta Pusat, DKI Jakarta, 10610)
Erlya Afrianti (Pusat Meteorologi Penerbangan, Badan Meteorologi Klimatologi dan Geofisika, Jakarta Pusat, DKI Jakarta, 10610)
Arifatul Hidayanti (Pusat Meteorologi Penerbangan, Badan Meteorologi Klimatologi dan Geofisika, Jakarta Pusat, DKI Jakarta, 10610)
Wishnu Agum Swastiko (Pusat Meteorologi Penerbangan, Badan Meteorologi Klimatologi dan Geofisika, Jakarta Pusat, DKI Jakarta, 10610)
Helminah Herawati (Pusat Meteorologi Penerbangan, Badan Meteorologi Klimatologi dan Geofisika, Jakarta Pusat, DKI Jakarta, 10610)
Atri Wiujiana (Pusat Meteorologi Penerbangan, Badan Meteorologi Klimatologi dan Geofisika, Jakarta Pusat, DKI Jakarta, 10610)



Article Info

Publish Date
10 Jun 2023

Abstract

The weather forecast is significant to protect life and property. A forecast of temperature is important to the agriculture sector because when high temperatures can cause the soil to dry out faster and reduce the availability of water for plants. Furthermore, understanding the temperature condition can help meteorologists forecast the other atmosphere condition. The purpose of this research is to make a modeling prediction of temperature conditions the next day using an artificial neural network model (ANN). To make the ANN model, the daily average temperature measured in the meteorological stations in the urban and the coastal areas of Jakarta over 2010 – 2019 was used as training data. The testing data using surface temperature during January – December 2020. This model uses the various number of neurons in the hidden lapisan between 3 and 15. Based on the result, the ANN model is good enough to predict the temperature condition in Jakarta with the correlation between 0.625 – 0.653 and mean absolute error (MAE) between 0.569 – 0.600 oC. The best model prediction was obtained when the neuron number was 4 in the Urban Area of Jakarta and 8 in the Coastal Area of Jakarta seen from the high correlation value with the observations and a low error rate.

Copyrights © 2023






Journal Info

Abbrev

bgb

Publisher

Subject

Agriculture, Biological Sciences & Forestry Astronomy Computer Science & IT Earth & Planetary Sciences Environmental Science

Description

Buletin GAW Bariri (BGB) merupakan buletin karya tulis ilmiah yang diterbitkan oleh Stasiun Pemantau Atmosfer Global Lore Lindu Bariri - Palu BMKG sebagai sarana publikasi hasil penelitian dan kajian di bidang Meteorologi, Klimatologi, Kualitas Udara, dan Geofisika (MKKuG), serta ...