Jurnal Masyarakat Informatika
Vol 14, No 1 (2023): JURNAL MASYARAKAT INFORMATIKA

Intrusion Detection Systems pada Bot-IoT Dataset Menggunakan Algoritma Machine Learning

Sibarani, Jonathan Nicholas (Unknown)
Sirait, Dheo Ronaldo (Unknown)
Ramadhanti, Salma Safira (Unknown)



Article Info

Publish Date
21 Jun 2023

Abstract

Semakin berkembangnya dunia teknologi, semakin banyak juga penggunaan internet dalam kehidupan sehari hari. Pertumbuhan dalam penggunaan internet tersebut menimbulkan kekhawatiran tentang keamanan saat menggunakan layanan internet. Untuk menjamin keamanan pengguna, dapat menggunakan Intrusion Detection System (IDS). Intrusion Detection System merupakan sebuah sistem yang akan mengawasi aktivitas dalam jaringan komputer dengan menggunakan berbagai macam metode seperti machine learning. Dalam jurnal penelitian ini, digunakan tiga macam algoritma machine learning untuk membantu IDS dalam mengenali serangan. Algoritma machine learning yang digunakan adalah K-Nearest Neighbor, Random Forest, dan Gaussian Naïve Bayes. Untuk membantu penelitian juga digunakan BoT-IoT Dataset yang dibuat oleh UNSW Canberra dengan lebih dari 72.000.000 baris data. Penelitian ini dilakukan dengan tujuan untuk menentukan algoritma yang paling sesuai dalam melakukan deteksi intrusi dengan dataset BoT-IoT.

Copyrights © 2023






Journal Info

Abbrev

jmasif

Publisher

Subject

Computer Science & IT

Description

JURNAL MASYARAKAT INFORMATIKA - JMASIF is a Journal published by the Department of Informatics, Universitas Diponegoro invites lecturers, researchers, students (Bachelor, Master, and Doctoral) as well as practitioners in the field of computer science and informatics to contribute to JMASIF in the ...