TIERS Information Technology Journal
Vol. 4 No. 1 (2023)

Application of The K-Means Clustering Method To Search For Potential Tourists of Bendesa Hotel

I Gede Karang Komala Putra (Universitas Bali Internasional)
I Gede Wahyu Surya Dharma (Universitas Bali Internasional)



Article Info

Publish Date
25 Jun 2023

Abstract

Hotels play a significant role in the growth of global tourism. With intense competition in the hotel industry, hotels are shifting their focus from solely providing superior services to identifying potential tourists. In a previous study, the J48 algorithm was employed to extract hotel transaction patterns, achieving an accuracy level of 71.6418% by considering gender and age characteristics[1]. In a separate study, foreign guest ratings by province were classified into three clusters. The study concluded that nearly 90% of provinces in Indonesia exhibit low levels of tourism, supported by the analysis of the number of tourists staying, as reported by the statistical center[2]. To identify potential tourists who can bring benefits to the hotel, hotel managers can utilize the k-means algorithm. In this study, a data mining process was conducted using data collected from tourists who stayed at the Bendesa Hotel. The process began with tourist segmentation using the K-means algorithm divided into clusters. Subsequently, the accuracy of the obtained data was calculated. This research employed room class as a reference value to discover tourist characteristics at the Bendesa Hotel. The results of applying the K-means model with 4 clusters indicated that the accuracy level for identifying potential tourists reached 84.4%.

Copyrights © 2023






Journal Info

Abbrev

tiers

Publisher

Subject

Computer Science & IT

Description

TIERS Information Technology Journal memuat artikel Hasil Penelitian dan Studi Kepustakaan dari cabang Teknologi Informasi dengan bidang Sistem Informasi, Artificial Intelligence, Internet of Things, Big Data, e-commerce, Financial Technology, Business ...