International Journal of Electrical and Computer Engineering
Vol 13, No 5: October 2023

Content-based product image retrieval using squared-hinge loss trained convolutional neural networks

Arif Rahman (Universitas Gadjah Mada)
Edi Winarko (Universitas Gadjah Mada)
Khabis Mustofa (Universitas Gadjah Mada)



Article Info

Publish Date
01 Oct 2023

Abstract

Convolutional neural networks (CNN) have proven to be highly effective in large-scale object detection and image classification, as well as in serving as feature extractors for content-based image retrieval. While CNN models are typically trained with category label supervision and softmax loss for product image retrieval, we propose a different approach for feature extraction using the squared-hinge loss, an alternative multiclass classification loss function. First, transfer learning is performed on a pre-trained model, followed by fine-tuning the model. Then, image features are extracted based on the fine-tuned model and indexed using the nearest-neighbor indexing technique. Experiments are conducted on VGG19, InceptionV3, MobileNetV2, and ResNet18 CNN models. The model training results indicate that training the models with squared-hinge loss reduces the loss values in each epoch and reaches stability in less epoch than softmax loss. Retrieval results show that using features from squared-hinge trained models improves the retrieval accuracy by up to 3.7% compared to features from softmax-trained models. Moreover, the squared-hinge trained MobileNetV2 features outperformed others, while the ResNet18 feature gives the advantage of having the lowest dimensionality with competitive accuracy.

Copyrights © 2023






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...