International Journal of Electrical and Computer Engineering
Vol 13, No 5: October 2023

Regional feature learning using attribute structural analysis in bipartite attention framework for vehicle re-identification

Cynthia Sherin (SRM Institute of Science and Technology)
Kayalvizhi Jayavel (SRM Institute of Science and Technology)



Article Info

Publish Date
01 Oct 2023

Abstract

Vehicle re-identification identifies target vehicles using images obtained by numerous non-overlapping real-time surveillance cameras. The effectiveness of re-identification is further challenging because of illumination changes, pose differences of captured images, and resolution. Fine-grained appearance changes in vehicles are recognized in addition to the coarse-grained characteristics like color of the vehicle along with model, and other custom features like logo stickers, annual service signs, and hangings to overcome these challenges. To prove the efficiency of our proposed bipartite attention framework, a novel dataset called Attributes27 which has 27 labelled attributes for each class are created. Our framework contains three major sections: The first section where the overall and semantic characteristics of every individual vehicle image are extracted by a double branch convolutional neural network (CNN) layer. Secondly, to identify the region of interests (ROIs) each branch has a self-attention block linked to it. Lastly to extract the regional features from the obtained ROIs, a partition-alignment block is deployed. The results of our proposed system’s evaluation on the Attributes27 and VeRi-776 datasets has highlighted significant regional attributes of each vehicle and improved the accuracy. Attributes27 and VeRi-776 datasets exhibits 98.5% and 84.3% accuracy respectively which are comparatively higher than the existing methods with 78.6% accuracy.

Copyrights © 2023






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...