Jurnal CoreIT
Vol 9, No 1 (2023): June 2023

Efficiency of the Combination of Machine Learning Models in the Evaluation of Weather Parameters

Yannick Mubakilayi (University of Kinshasa)
Simon Ntumba (University of Kinshasa)
Pierre Kafunda (University of Kinshasa)
Salem Cimanga (Official University of Mbujimayi)
Gracias Kabulu (University of Mbujimayi)



Article Info

Publish Date
08 Jul 2023

Abstract

In this article we exploit the potential presented by the combination of machine learning models (Ensemble Learning) as one of the essential points of the Soft aspect, i.e. observation tools, monitoring, sampling and study of meteorological parameters in order to provide effective support and monitoring of measures taken at different levels in the fight against climate change and sustainable management of the environment by creating a learning model automatic composed of the measurements of the various meteorological parameters (Temperature, Rainfall, Humidity rate, Wind speed, etc.) by training this model using the Ensemble Learning technique called "BOOSTING" on the various measurements taken from each indicator so as to continuously train on past data and be able to predict the next weather forecast with high precision or even make annual or multi-year projections of the evolution of our climatic situation and present this to the various players in our environment and thus enable them to better anticipate possible extreme situations that could negatively affect our environmental situation.

Copyrights © 2023






Journal Info

Abbrev

coreit

Publisher

Subject

Computer Science & IT

Description

Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi published by Informatics Engineering Department – Universitas Islam Negeri Sultan Syarif Kasim Riau with Registration Number: Print ISSN 2460-738X | Online ISSN 2599-3321. This journal is published 2 (two) times a year ...