JURNAL MEDIA INFORMATIKA BUDIDARMA
Vol 7, No 3 (2023): Juli 2023

Sentiment Analysis using Random Forest and Word2Vec for Indonesian Language Movie Reviews

Fahriza Ichsani Rafif (Telkom University, Bandung)
Mahendra Dwifebri Purbolaksono (Telkom University, Bandung)
Widi Astuti (Telkom University, Bandung)



Article Info

Publish Date
23 Jul 2023

Abstract

The film industry in recent years has become one of the industries that people are most interested in. The convenience of watching movies through streaming services is one of the reasons why watching movies is so popular. This ease of access resulted in a large selection of available movies and encouraged the public to look for movie reviews to find out whether the movies was good or bad. Freedom of expression on the internet has resulted in many movie reviews being spread. Therefore, sentiment analysis was conducted to see the positive or negative of these reviews. The method used in this research is Random Forest and Word2Vec skip-gram as feature extraction. The Random Forest classification was chosen because Randomforest is a highly flexible and highly accurate method, while Word2Vec Skip-Gram is used as a feature extraction because it is an efficient model that studies a large number of word vectors in an irregular text. The best model obtained from this experiment is a model built with stemming, Word2Vec with 300 dimensions, and a max_depth value of 23, achieving an f1-score of 83.59%.

Copyrights © 2023






Journal Info

Abbrev

mib

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

Decission Support System, Expert System, Informatics tecnique, Information System, Cryptography, Networking, Security, Computer Science, Image Processing, Artificial Inteligence, Steganography etc (related to informatics and computer ...