PRISMA, Prosiding Seminar Nasional Matematika
Vol 1 (2018): PRISMA, Prosiding Seminar Nasional Matematika

Keberlakuan Teorema pada Beberapa Struktur Aljabar




Article Info

Publish Date
01 Feb 2018

Abstract

Aljabar abstrak merupakan salah satu bidang kajian dalam matematika. Kajian dalam aljabar abstrak antara lain tentang struktur grup dan ring yang meliputi definisi dan sifat-sifatnya (teorema). Setiap definisi diikuti oleh contoh-contoh sedangkan sifat/teorema diikuti oleh bukti. Setiap teorema dapat digunakan untuk menyelesaikan suatu masalah yang terkait dengan definisi atau untuk pembuktian teorema berikutnya. Pada prinsipnya, suatu teorema dapat digunakan apabila teorema tersebut sudah dibuktikan. Oleh karenanya dalam kajian aljabar abstrak yang merupakan topik utama adalah pembuktian teorema. Bentuk umum dari teorema adalah implikasi, yang terdiri atas hipotesis dan konklusi (simpulan). Ada beberapa teorema yang menarik untuk dikaji terkait dengan struktur grup atau ring, seperti homomorfisma dan isomorfisma. Sebagai contoh, dalam homomorfisma grup berlaku elemen identitas selalu dikawankan dengan elemen identitas, invers suatu elemen dikawankan dengan invers dari peta elemen tersebut, peta subgrup dari domain merupakan subgrup dari kodomain, prapeta subgrup dari kodomain merupakan subgrup dari domain. Hal yang serupa berlaku pada homomorfisma ring. Dalam kajian grup dan ring masih banyak teorema yang saling terkait keduanya. Tulisan ini bertujuan untuk mengkaji keberlakuan beberapa teorema yang terdapat dalam grup dan ring maupun pengembangan dari keduanya.

Copyrights © 2018






Journal Info

Abbrev

prisma

Publisher

Subject

Mathematics

Description

PRISMA, Prosiding Seminar Nasional Matematika, mempublikasikan ide, gagasan, hasil penelitian matematika atau pembelajarannya. Prisma diterbitkan berkala setiap tahun, sebagai ajang publikasi seminar nasional yang diselenggarakan oleh Jurusan Matematika Fakultas MIPA Universitas Negeri Semarang. ...