Artikel ini membahas mengenai analisis kestabilan pada model interaksi mangsa pemangsa dengan adanya pemanenan terhadap pemangsa. Pemanenan pada populasi pemangsa menggunakan pemanenan dengan upaya konstan. Pemanenan pada dinamika mangsa pemangsa dapat menstabilkan keseimbangan kedua populasi agar tetap ada. Model matematika mangsa pemangsa dngan menggunakan fungsi respon Beddington-DeAngelis, dan upaya pemanenan konstan pada populasi pemangsa.Tahapan yang dilakukan dalam analisis dinamik meliputi, mencari titik kesetimbangan, melakukan linearisasi sistem, dan melakukan analisis kestabilan titik kesetimbangan menggunakan nilai eigen. Simulasi numerik digunakan untuk mengkonfirmasi hasil analitik dan perilaku analisis sistem melalui ilustrasi grafis Matcont dam Pplane. Nilai parameter menggunakan populasi bakteri bersel satu yaitu, Paramecium Aurelia sebagai mangsa dan Didinium Nasutum sebagai pemangsa. Hasil analisis kestabilan dari model diperoleh tiga titik kesetimbangan yaitu, dan adalah saddle tidak stabil. Sedangkan adalah nodal sink stabil. Kontinuasi parameter pemanenan pada pemangsa diperoleh bifurkasi transkritikal. Bifurkasi transkritikal terjadi apabila terdapat persilangan dari dua cabang titik kesetimbangan dari nodal sink stabil menjadi saddle tidak stabil, begitu pula sebaliknya. Hasil analisis menunjukkan Semakin besar laju pemanenan , populasi pemangsa menurun menuju kepunahan. Sedangkan populasi mangsa akan tetap stabil sampai waktu menuju tak hingga. Sebaliknya ketika laju pemanenan kecil, populasi mangsa dan pemangsa dapat hidup berdampingan dan tidak mengalami kepunahan sampai waktu menuju tak hingga.
Copyrights © 2020