Abstract. Maintaining student graduation rates are the main tasks of a University. High rates of student graduation and the quality of graduates is a success indicator of a university, which will have an impact on public confidence as stakeholders of higher education and the National Accreditation Board as a regulator (government). Making predictions of student graduation and determine the factors that hinders will be a valuable input for University. Data mining system facilitates the University to create the segmentation of students’ performance and prediction of their graduation. Segmentation of student by their performance can be classified in a quadrant chart is divided into 4 segments based on grade point average and the growth rate of students performance index per semester. Standard methodology in data mining i.e CRISP-DM (Cross Industry Standard Procedure for Data Mining) will be implemented in this research. Making predictions, graduation can be done through the modeling process by utilizing the college database. Some algorithms such as C5, C & R Tree, CHAID, and Logistic Regression tested in order to find the best model. This research utilizes student performance data for several classes. Parameters used in addition to GPA also included the master's students data are expected to build the student profile data. The outcome of the study is the student category based on their study performance and prediction of graduation. Based on this prediction, the university may recommend actions to be taken to improve the student  achievement index and graduation rates.Keywords: graduation, segmentation, quadrant GPA, data mining, modeling algorithms
Copyrights © 2015