KLIK: Kajian Ilmiah Informatika dan Komputer
Vol. 4 No. 1 (2023): Agustus 2023

Penerapan Naïve Bayes Classifier, Support Vector Machine, dan Decision Tree untuk Meningkatkan Deteksi Ancaman Keamanan Jaringan

Ahmad Zy (Universitas Pelita Bangsa, Bekasi)
Ananto Tri Sasongko (Universitas Pelita Bangsa, Bekasi)
Antika Zahrotul Kamalia (Universitas Pelita Bangsa, Bekasi)



Article Info

Publish Date
31 Aug 2023

Abstract

This research aims to implement three machine learning algorithms, namely Naïve Bayes Classifier, Support Vector Machine (SVM), and Decision Tree, to enhance network security threat detection. The study utilizes data from multiple sources to train the machine learning models and evaluate their performance in detecting network security threats such as malware, ransomware, and spyware. The research results indicate that all three machine learning algorithms can improve the effectiveness of network security threat detection, surpassing conventional methods in terms of accuracy. Decision Tree yields the best results with a precision of 0.98, , followed by SVM with a precision of 90%, While Naïve Bayes Classifier a precision of 0.86.

Copyrights © 2023






Journal Info

Abbrev

klik

Publisher

Subject

Computer Science & IT

Description

Topik utama yang diterbitkan mencakup: 1. Teknik Informatika 2. Sistem Informasi 3. Sistem Pendukung Keputusan 4. Sistem Pakar 5. Kecerdasan Buatan 6. Manajemen Informasi 7. Data Mining 8. Big Data 9. Jaringan Komputer 10. Dan lain-lain (topik lainnya yang berhubungan dengan Teknologi Informati dan ...