Emerging Science Journal
Vol 7, No 4 (2023): August

The Partial L-Moment of the Four Kappa Distribution

Pannarat Guayjarernpanishk (Faculty of Interdisciplinary Studies, Nong Khai Campus, Khon Kaen University, Nong Khai 43000,)
Piyapatr Bussababodhin (Department of Mathematics, Mahasarakham University, Maha Sarakham 41150,)
Monchaya Chiangpradit (Department of Mathematics, Mahasarakham University, Maha Sarakham 41150,)



Article Info

Publish Date
12 Jul 2023

Abstract

Statistical analysis of extreme events such as flood events is often carried out to predict large return period events. The behaviour of extreme events not only involves heavy-tailed distributions but also skewed distributions, similar to the four-parameter Kappa distribution (K4D). In general, this covers many extreme distributions such as the generalized logistic distribution (GLD), the generalized extreme value distribution (GEV), the generalized Pareto distribution (GPD), and so on. To utilize these distributions, we have to estimate parameters accurately. There are many parameter estimation methods, for example, Method of Moments, Maximum Likelihood Estimator, L-Moments, or partial L-Moments. Nowadays, no researchers have applied the partial L-Moments method to estimate the parameters of K4D. Therefore, the objective of this paper is to derive the partial L-Moments (PL-Moments) for K4D, namely the PL-Moments of the K4D in order to estimate hydrological extremes from censored data. The findings of this paper are formulas of parameter estimation for K4D based on the PL-Moments approach. We have derived the Partial Probability-Weighted Moments (PPWMs) of the K4D (β'r) and derive the estimation of parameters when separated by shape parameters (k,h) conditions i.e., case k>-1 and h>0, case k>-1 and h=0 and case -1<k<-1/h and h<0. Finally, we expect that the parameter estimate for K4D from this formula will help to make accurate forecasts. Doi: 10.28991/ESJ-2023-07-04-06 Full Text: PDF

Copyrights © 2023






Journal Info

Abbrev

ESJ

Publisher

Subject

Environmental Science

Description

Emerging Science Journal is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering and sciences. While it encourages a broad spectrum of contribution in the engineering and sciences. Articles of interdisciplinary nature are ...