Knowledge Engineering and Data Science
Vol 6, No 1 (2023)

Deep Learning for Multi-Structured Javanese Gamelan Note Generator

Arik Kurniawati (Department of Electrical Engineering)
Eko Mulyanto Yuniarno (Department of Electrical Engineering
Department of Computer Engineering)

Yoyon Kusnendar Suprapto (Department of Electrical Engineering
Department of Computer Engineering)



Article Info

Publish Date
30 May 2023

Abstract

Javanese gamelan, a traditional Indonesian musical style, has several song structures called gendhing. Gendhing (songs) are written in conventional notation and require gamelan musicians to recognize patterns in the structure of each song. Usually, previous research on gendhing focuses on artistic and ethnomusicological perspectives, but this study is to explore the correlation between gendhing as traditional music in Indonesia and deep learning technology that replaces the task of gamelan composers. This research proposes CNN-LSTM to generate notation of ricikan struktural instruments as an accompaniment to Javanese gamelan music compositions based on balungan notation, rhythm, song structure, and gatra information. This proposed method (CNN-LSTM) is compared with LSTM and CNN. The musical data in this study is represented using numerical notation for the main melody in balungan notation. The experimental results showed that the CNN-LSTM model showed better performance compared to the LSTM and CNN models, with accuracy values of 91.9%, 91.5%, and 91.2% for CNN-LSTM, LSTM, and CNN, respectively. And the value of note distance for the Sampak song structure is 4 for the CNN-LSTM model, 8 for the LSTM model, and 12 for the CNN model. The smaller the note distance, the closer it is to the original notation provided by the gamelan composer. This study provides relevance for novice gamelan musicians who are interested in learning karawitan, especially in understanding ricikan struktural music notation and gamelan art in composing musical compositions of a song.

Copyrights © 2023






Journal Info

Abbrev

keds

Publisher

Subject

Computer Science & IT Engineering

Description

Knowledge Engineering and Data Science (2597-4637), KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base ...