J-SAKTI (Jurnal Sains Komputer dan Informatika)
Vol 7, No 2 (2023): EDISI SEPTEMBER

Analisis Perbandingan Algoritma Supervised Learning untuk Prediksi Kasus Covid-19 di Jakarta

Septhiani, Angeline (Unknown)
Hendry, H (Unknown)



Article Info

Publish Date
30 Sep 2023

Abstract

Coronavirus disease or called COVID-19 is a pandemic according to World Health Organization (WHO) in February. The virus gives several symptoms, such as cough, asthma, and fever. The data and information are the important part of making a good decision. Those data need to be processed and analyzed to be useful information. In this research, the data will be used to predict the COVID-19 issue in Jakarta, using several supervised learning algorithm models, such as K-Nearest Neighbors, Neural Network, Linear Regression, Support Vector Machine, and Random Forest. Using 10 Fold Cross Validation in model testing and T-Test to get the model with the best accuracy. According to this research, the algorithm that has the best accuracy is K-Nearest Neighbors with the lowest RMSE, 1096.188 +/- 365.077 (micro average: 1149.601 +/- 0.000).

Copyrights © 2023






Journal Info

Abbrev

jsakti

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Energy

Description

J-SAKTI adalah jurnal yang diterbitkan oleh LPPM STIKOM Tunas Bangsa yang berfokus di bidang Manajemen Informatika. Pengiriman artikel tidak dipungut biaya, kemudian artikel yang diterima akan diterbitkan secara online dan dapat diakses secara gratis. Topik dari J-SAKTI adalah sebagai berikut (namun ...