Journal of Electrical Engineering and Computer (JEECOM)
Vol 5, No 2 (2023)

Classification of Credit Card Frauds Detection using machine learning techniques

Ismail, Rasha Rokan (Unknown)
Khorsheed, Farah Hatem (Unknown)



Article Info

Publish Date
13 Oct 2023

Abstract

Credit card fraud refers to the illegal activities carried out by criminals. In this research paper, we delve into the topic by exploring four different approaches to analyze fraud, namely decision trees, logistic regression, support vector machines, and Random Forests. Our proposed technique encompasses four stages: inputting the dataset, balancing the data through sampling, training classifier models, and detecting fraud. To analyze the data, we utilized two methods: forward stepwise logistic regression analysis (LR) and decision tree analysis (DT), in addition to Random Forest and support vector machine. Based on the outcomes of our analysis, the decision tree algorithm produced the highest AUC and accuracy value, achieving a perfect score of 1. On the other hand, logistic regression yielded the lowest values of 0.33 and 0.2933 for AUC and accuracy, respectively. Moreover, the implementation of forest algorithms resulted in an impressive accuracy rate of 99.5%, which signifies a significant advancement in automating the detection of credit card fraud.

Copyrights © 2023






Journal Info

Abbrev

jeecom

Publisher

Subject

Control & Systems Engineering Electrical & Electronics Engineering Energy

Description

Journal of Electrical Engineering and Computer (JEECOM) is published by Engineering Faculty of Nurul Jadid University, Probolinggo, East Java, Indonesia. This journal encompasses research articles, original research report, : 1) Power Systems, 2) Signal, System, and Electronics, 3) Communication ...