IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 12, No 4: December 2023

Global-local attention with triplet loss and label smoothed crossentropy for person re-identification

Nha Tran (University of Education)
Toan Nguyen (University of Education)
Minh Nguyen (University of Education)
Khiet Luong (University of Education)
Tai Lam (University of Education)



Article Info

Publish Date
01 Dec 2023

Abstract

Person re-identification (Person Re-ID) is a research direction on tracking and identifying people in surveillance camera systems with non-overlapping camera perspectives. Despite much research on this topic, there are still some practical problems that Person Re-ID has not yet solved, in reality, human objects can easily be obscured by obstructions such as other people, trees, luggage, umbrellas, signs, cars, motorbikes. In this paper, we propose a multibranch deep learning network architecture. In which one branch is for the representation of global features and two branches are for the representation of local features. Dividing the input image into small parts and changing the number of parts between the two branches helps the model to represent the features better. In addition, we add an attention module to the ResNet50 backbone that enhances important human characteristics and eliminates irrelevant information. To improve robustness, the model is trained by combining triplet loss and label smoothing cross-entropy loss (LSCE). Experiments are carried out on datasets Market1501, and duke multi-target multi-camera (DukeMTMC) datasets, our method achieved 96.04% rank-1, 88,11% mean average precision (mAP) on the Market1501 dataset, and 88.78% rank-1, 78,6% mAP on the DukeMTMC dataset. This method achieves performance better than some state-of-the-art methods.

Copyrights © 2023






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...