Journal of Electronics, Electromedical Engineering, and Medical Informatics
Vol 5 No 3 (2023): July

Implementation of Particle Swarm Optimization Feature Selection on Naïve Bayes for Thoracic Surgery Classification

Shalehah (Universitas Lambung Mangkurat)
Muhammad Itqan Mazdadi (Universitas Lambung Mangkurat)
Andi Farmadi (Universitas Lambung Mangkurat)
Dwi Kartini (Universitas Lambung Mangkurat)
Muliadi (Universitas Lambung Mangkurat)



Article Info

Publish Date
08 Jul 2023

Abstract

Thoracic surgery is among the operations that are most often performed on patients with lung cancer. Naive Bayes is one of the data mining classification techniques that may be used to handle thoracic surgery data. Therefore, the goal of this study is to assess the precision of all research models using Naive Bayes with and without Particle Swarm Optimization. This study's methodology includes the dataset used, the Naive Bayes algorithm theory, the particle swarm optimization algorithm, test validation using split validation, and performance assessment using the confusion matrix and AUC evaluation approaches. In this inquiry, secondary data are retrieved via the UCI Repository website. Thoracic surgery weight optimization accuracy is increased using particle swarm optimization. The test results of the Naive Bayes technique utilizing the thoracic surgery dataset showed the highest accuracy of 81.91% at a ratio of 80:20 and an AUC value of 0.620. The highest accuracy score is 93.62% with an AUC value of 0.773 at a ratio of 90:10, with three characteristics, namely PRE6, PRE14, and PRE17, having zero weight. This accuracy score was achieved when Particle Swarm Optimization was used to refine feature selection for attribute weighting. As a consequence, Naïve Bayes accuracy in thoracic surgery has increased as a result of attribute weighting on feature selection utilizing Particle Swarm Optimization. In turn, this research contributes to increasing the precision and efficiency with which thoracic surgical data are processed, which benefits lung cancer diagnosis in both speed and accuracy.

Copyrights © 2023






Journal Info

Abbrev

jeeemi

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas ...