Eksponensial
Vol. 14 No. 1 (2023)

Pemodelan Regresi Weibull Pada Data Kontinu Yang Diklasifikasikan (Studi kasus: Data Indikator Pencemaran Air Dissolved Oxygen Pada DAS Mahakam Kalimantan Timur Tahun 2020)

Sudarman, Alfiannur Rizki (Unknown)
Suyitno, Suyitno (Unknown)
Siringoringo, Meiliyani (Unknown)



Article Info

Publish Date
31 May 2023

Abstract

Weibull regression model is a Weibull distribution that is directly influenced by covariates. Weibull regression models discussed in this study are Weibull survival regression model, Weibull hazard regression, and Weibull mean regression. The Weibull regression model in this study was applied to water pollution indicator of dissolved oxygen (DO) data in the Mahakam watershed of East Kalimantan in 2020. The purpose of this study was to obtain a Weibull regression model for water pollution indicator of DO data, to obtain the factors that influence the Weibull regression model, and to interpretation the Weibull regression model of water pollution indicator of DO data. The study’s result is that the Newton-Raphson iterative approach was used to find the approximate of maximum likelihood estimator. Based on the hypothesis testing, it is concluded the factors that influence the water pollution indicator of DO data the Mahakam watershed in 2020 are total suspended solid (TSS), total dissolved solid (TDS), nitrate and ammonia.

Copyrights © 2023






Journal Info

Abbrev

exponensial

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Economics, Econometrics & Finance Mathematics Other

Description

Jurnal Eksponensial is a scientific journal that publishes articles of statistics and its application. This journal This journal is intended for researchers and readers who are interested of statistics and its ...