BIMASTER
Vol 12, No 4 (2023): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya

PEMODELAN JUMLAH SISWA PUTUS SEKOLAH MENGGUNAKAN METODE GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL REGRESSION

Selvia, Eva (Unknown)
Imro’ah, Nurfitri (Unknown)
Andani, Wirda (Unknown)



Article Info

Publish Date
31 Jul 2023

Abstract

Jumlah siswa putus sekolah (Y) merupakan data cacah sehingga analisis yang tepat untuk memodelkannya adalah dengan regresi Poisson. Namun terdapat asumsi yang harus dipenuhi yaitu equisdispersi atau rata-rata harus sama dengan varians. Pada kenyataannya, terdapat suatu kondisi dimana nilai varians lebih besar dari pada nilai rata-rata atau disebut overdispersi. Salah satu alternatif yang dapat digunakan untuk masalah overdispersi pada data cacah adalah regresi Binomial negatif. Regresi Binomial negatif ini kurang tepat jika digunakan pada data yang mengandung heterogenitas spasial atau keragaman antar wilayah. Pengembangan model regresi yang memperhatikan masalah heterogenitas spasial serta masalah overdispersi pada variabel responnya yaitu Geographically Weighted Negative Binomial Regression (GWNBR). Penelitian ini bertujuan untuk memodelkan serta menentukan faktor apa saja yang mempengaruhi jumlah siswa putus sekolah pada jenjang pendidikan dasar menggunakan metode GWNBR. Hasil penelitian yang diperoleh yaitu terdapat dua kelompok kabupaten/kota berdasarkan variabel yang signifikan. Kelompok pertama dipengaruhi oleh semua variabel prediktor, sedangkan kelompok kedua dipengaruhi oleh variabel rasio siswa terhadap guru, tingkat pengangguran terbuka, dan rata-rata pengeluaran perkapita selama sebulan.  Kata Kunci : Putus Sekolah, Overdispersi, Heterogenitas Spasial

Copyrights © 2023






Journal Info

Abbrev

jbmstr

Publisher

Subject

Decision Sciences, Operations Research & Management Mathematics

Description

Bimaster adalah Jurnal Ilmiah berkala bidang Matematika, Statistika dan Terapannya yang terbit secara online dan dikelola oleh Jurusan Matematika FMIPA ...