ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika
Vol 11, No 4: Published October 2023

Klasifikasi Jajanan Tradisional Indonesia berbasis Deep Learning dan Metode Transfer Learning

FATURRAHMAN, RAIHAN (Unknown)
HARIYANI, YULI SUN (Unknown)
HADIYOSO, SUGONDO (Unknown)



Article Info

Publish Date
24 Oct 2023

Abstract

ABSTRAKMakanan jajanan tradisional Indonesia telah menjadi warisan budaya yang berharga dan penting. Namun di tengah kemajuan zaman, sebagian masyarakat menganggapnya ketinggalan dan beralih ke makanan modern. Sebagai bagian dari upaya untuk melestarikan dan membantu masyarakat terutama kaum muda untuk mengenali ragam jajanan tradisional Indonesia, maka penelitian ini bertujuan untuk mengklasifikasi jenis jajanan tradisional Indonesia secara otomatis berdasarkan citra dengan menggunakan arsitektur deep learning. Dalam penelitian ini, dilakukan penggunaan metode transfer learning untuk melatih ulang basenetwork, sehingga mampu mengenali citra jajanan tradisional Indonesia. Di antara tiga base network yang dilatih dan diuji, disimpulkan bahwa dengan menggunakan base-network mobilenetV2 menghasilkan akurasi uji sebesar 98%, tertinggi dibandingkan dengan menggunakan ResNet50 dan VGG16 yang menghasilkan akurasi uji 97.33% dan 93.33%.Kata kunci: jajanan tradisional indonesia, klasifikasi, deep learning, transfer learning ABSTRACTTraditional Indonesian snacks have become valuable and important cultural heritage. However, amidst the progress of time, some people consider them outdated and switch to modern foods. As part of an effort to preserve and help the community, especially the younger generation, to recognize various traditional Indonesian snacks, this research aims to automatically classify types of traditional Indonesian snacks based on images using deep learning architecture. In this study, transfer learning method was employed to retrain the base-network, enabling it to recognize images of traditional Indonesian snacks. Among the three base networks trained and tested, it was concluded that using the MobileNetV2 base-network resulted in a test accuracy of 98%, the highest compared to using ResNet50 and VGG16, which achieved test accuracies of 97.33% and 93.33% respectively.Keywords: Indoensian traditional snack, classification, deep learning, transfer learning

Copyrights © 2023






Journal Info

Abbrev

elkomika

Publisher

Subject

Electrical & Electronics Engineering Engineering

Description

Jurnal ELKOMIKA diterbitkan 3 (tiga) kali dalam satu tahun pada bulan Januari, Mei dan September. Jurnal ini berisi tulisan yang diangkat dari hasil penelitian dan kajian analisis di bidang ilmu pengetahuan dan teknologi, khususnya pada Teknik Energi Elektrik, Teknik Telekomunikasi, dan Teknik ...