The development of information technology will always be accompanied by the storage and accumulation of massive quantities of digital information. Cluster analysis is one of many data processing problems that require the selection of an appropriate algorithm when dealing with large data sets. Cluster analysis is a collection of techniques for dividing a set of observation objects into clusters. Cluster analysis is applicable to time series data, the processing of which differs slightly from that of cross-section data. Clustering time series is a technique for processing multivariable time series data. K-Medoids is the clustering algorithm used for time series clustering. The objective of this study is to obtain optimal K-values in determining the number of clusters based on silhouette coefficients and grouping outcomes using the K-Medoids algorithm. In this study, the dynamic time-warping distance is utilized as the similarity metric. This study provides cooking oil price data for 34 Indonesian provinces from October 2017 to October 2022. The optimal K value is determined for two clusters based on the results of the analysis, with 19 provinces joining cluster 1, where the cluster with cooking oil prices was below cluster 2 and 15 provinces joining cluster 2 which is the cluster with the highest cooking oil prices.
                        
                        
                        
                        
                            
                                Copyrights © 2023