The implementation of deep learning has expanded into various fields, not confined solely to the field of education, particularly in computer science. It has also integrated technology into various other domains, including geospatial, remote sensing, and even the medical field. This development has made a significant contribution to reshaping the way humans understand and tackle challenges across different sectors. In this context, deep learning is employed for object detection and classification. Despite the considerable progress facilitated by the application of deep learning, object detection remains a challenge that is not entirely resolved. Constraints such as variations in lighting conditions, angles of view, and object diversity make achieving high-accuracy object detection a difficult task. Therefore, further research is required to comprehend and compare the performance of various deep learning models in addressing this issue. This research focuses on the comparison of two deep learning models, namely ResNet50 and Xception, in terms of loss metrics when detecting an object, in this case, a chair. The models are provided with input images of chairs and predict whether the chairs are empty or occupied. The results obtained from this research indicate that the ResNet50 model has a lower total loss value of 0.19422098, while the Xception model has a total loss value of 1.1822930. The lower the loss value, the better the model's performance. Based on the comparison results, the author has developed a web application simulator using Flask, utilizing the model with the lowest loss, which is the ResNet50 model.
Copyrights © 2023