Pandemi COVID-19 telah menyebabkan penurunan kunjungan pariwisata dan okupansi hotel. Penting bagi pengusaha hotel untuk memantau gaya hidup pengunjung guna menjaga kelangsungan bisnis. Salah satu cara untuk melakukannya adalah dengan memahami sentimen pengunjung hotel melalui analisis review agar mendapatkan pemahaman yang lebih baik dalam pengambilan keputusan terkait layanan dan aspek bisnis di sektor perhotelan. Penelitian ini menerapkan model deep learning natural language processing BERT untuk menganalisis sentimen positif dan negatif dari review pengunjung hotel di Indonesia. Model BERT yang digunakan telah menjalani proses pretrained dan diterapkan metode fine-tuning untuk menghasilkan analisis sentimen yang akurat. Hasil evaluasi menunjukkan bahwa model fine-tuning SmallBERT yang dilatih menggunakan dataset 515k review hotel selama 5 epoch memberikan performa yang baik. Model SmallBERT mencapai akurasi sebesar 91,40%, presisi 90,51%, recall 90,51%, dan skor f1 90,51% saat dievaluasi dengan dataset yang diberi label secara manual. Visualisasi hasil perbandingan sentimen yang didominasi oleh sentimen positif, dilakukan menggunakan Tableau
Copyrights © 2023