Jurnal Rekayasa elektrika
Vol 18, No 1 (2022)

Breast Cancer Detection in Mammography Image using Convolutional Neural Network

Farrel Fahrozi (Telkom University)
Sugondo Hadiyoso (Universitas Telkom)
Yuli Sun Hariyani (Telkom University)



Article Info

Publish Date
19 Apr 2022

Abstract

Breast cancer is one of the non-contagious diseases that tends to increase every year. This disease occurs almost entirely in women, but can also occur in men. One way to detect this disease is by observing mammography images. However, mammography images often tend to be blurry with low quality so that it is possible to detect them incorrectly. Therefore, in this study, automatic classification of breast cancer on mammographic images was carried out using the Convolutional Neural Network (CNN). This proposed system uses the VGG16 architecture with a transfer learning system. The proposed system is then optimized using Adam optimizers and RMSprop optimizers. The results of system testing for normal, benign, and malignant classifications obtained an accuracy value of 80% - 90% with the highest accuracy achieved using Adam's optimizers. With this proposed system, it is hoped that it can help in the clinical diagnosis of breast cancer. 

Copyrights © 2022






Journal Info

Abbrev

JRE

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Energy Engineering

Description

The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI ...