Jurnal Gaussian
Vol 12, No 2 (2023): Jurnal Gaussian

ANALISIS VOLATILITAS BITCOIN MENGGUNAKAN MODEL ARCH DAN GARCH

Dheanisa Widyanti (Department of Statistics, Universitas Diponegoro)
sudarno sudarno (Departemen statistika, Universitas Diponegoro)
Tatik widiharih (Departemen statistika, Universitas Diponegoro)



Article Info

Publish Date
28 Jul 2023

Abstract

The popularity of Bitcoin increased significantly in 2021. Bitcoin is considered to deliver high returns in a relatively short period, indicating that bitcoin has high volatility. Data with high volatility usually violates the Autoregresstive IntegratedinMovinginAverage (ARIMA)in homoscedasticity assumption. The Autoregressive Conditional Heteroscedasticity (ARCH) and General Autoregressive Conditional Heteroscedasticity (GARCH) model is often used to overcome the problem of heteroscedasticity in thelARIMA model. The ARCH and GARCH models canfbe used to model thefvolatilityfof data. This Research uses ARCH and GARCH models to overcome the heteroscedasticity problem caused by the high volatility of Bitcoin data for the period 30th June 2018 to 30th June 2022. The results of this study suggest that there might be a heteroscedasticity problem in Bitcoin data. The bestffiimodel for Bitcoin data ismiARIMA(1,0,[4])-GARCH(1,1) with an AIC value of -1,4263 at a 95% confidence level

Copyrights © 2023






Journal Info

Abbrev

gaussian

Publisher

Subject

Other

Description

Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM ...