Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Vol 11 No 2 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)

THE EXISTENCE AND UNIQUENESS OF THE MILD SOLUTION TO A NONLINEAR CAUCHY PROBLEM ASSOCIATED WITH A NONLOCAL REACTION-DIFFUSION SYSTEM

Guswanto, Bambang Hendriya (Unknown)
Bin Admon, Mohd. Ariff (Unknown)
Binti Lim Boon Chye, Nur Natasha (Unknown)



Article Info

Publish Date
27 Dec 2019

Abstract

ABSTRACT. We study the existence and uniqueness of a mild solution to a nonlinear Cauchy problem associated with a nonlocal reaction diffusion system by employing the properties of analytic semigroup operator generated by the linear part of the problem which is sectorial and then applying Banach Fixed Point Theorem to the problem. We show that the problem has a unique mild solution under a Lipschitz condition on the nonlinear part of the problem. An example as an application of the result obtained is also given.Keywords: existence, uniqueness, mild solution, nonlinear Cauchy problem, Banach fixed point theorem. ABSTRAK. Kita mengkaji keujudan dan ketunggalan penyelesaian lemah masalah Cauchy nonlinier yang berkaitan dengan sistem reaksi difusi nonlokal dengan menggunakan sifat-sifat operator semigrup yang dibangkitkan oleh operator pada bagian liniernya yang bersifat sektorial dan kemudian menerapkan Teorema Titik Tetap Banach pada masalah tersebut. Kita tunjukkan bahwa masalah tersebut memiliki penyelesaian lemah yang unik atas kondisi Lipschitz untuk operator pada bagian nonliniernya. Satu contoh sebagai penerapan hasil yang diperoleh juga diberikan.Kata kunci: keujudan, ketunggalan, penyelesaian lemah, masalah Cauchy nonlinier, teorema titik tetap Banach.

Copyrights © 2019






Journal Info

Abbrev

jmp

Publisher

Subject

Mathematics

Description

JMP is a an open access journal which publishes research articles, reviews, case studies, guest edited thematic issues and short communications/letters in all areas of mathematics, applied mathematics, applied commutative algebra and algebraic geometry, mathematical biology, physics and engineering, ...