Jurnal Riset Informatika
Vol. 4 No. 3 (2022): June 2022

PERFORMANCE COMPARISON OF MUSHROOM TYPE CLASSIFICATION BASED ON MULTI-SCENARIO DATASET USING DECISION TREE C4.5 AND C5.0

Citra Mirna Wati (Universitas Nahdlatul Ulama Blitar)
Abd. Charis Fauzan (Universitas Nahdlatul Ulama Blitar)
Harliana Harliana (Universitas Nahdlatul Ulama Blitar)



Article Info

Publish Date
24 Jun 2022

Abstract

Indonesia has a tropical climate that supports mushroom growth. Mushroom classification into poisonous and non-poisonous mushrooms. Identification of the type of mushroom is vital because mushrooms, especially poisonous mushrooms, risk causing potential hazards to humans, such as causing serious illness and even death. This study aimed to identify the fungus type using a computational approach, namely the Decision Tree C4.5 and C5.0 Algorithms. This research contributes to using multi-scenario datasets and comparing the performance of the C4.5 and C5.0 decision tree algorithms. The dataset used is a fungal classification dataset obtained from kaggle.com. The method stages in this research are literature study, data collection, and data preprocessing, which includes a data cleaning process and a partitioning process for multi-scenario datasets. Afterwards, the Decision Tree Algorithms C4.5 and C5.0 were implemented using the sci-kit-learn library. The last step is to do a performance comparison using the confusion matrix. The results showed that identifying poisonous mushrooms using the Decision Tree C5.0 Algorithm obtained an accuracy of 97.05% for scenario 1, 97.00% for scenario 2, and 97.11% for scenario 3. At the same time, the Decision Tre C4.5 algorithm yielded an accuracy. by 96.92% for scenario 1, 96.90% for scenario 2, and 97.05% for scenario 3. Based on the comparison of the performance of the classification results, we conclude that the Decision Tree C5.0 algorithm in scenario 3 has the highest accuracy for fungal identification poisonous.

Copyrights © 2022






Journal Info

Abbrev

jri

Publisher

Subject

Computer Science & IT

Description

Jurnal Riset Informatika, merupakan Jurnal yang diterbitkan oleh Kresnamedia Publisher. Jurnal Riset Informatika, berawal diperuntukan menampung paper-paper ilmiah yang dibuat oleh peneliti dan dosen-dosen program studi Sistem Informasi dan Teknik ...