eProceedings of Engineering
Vol. 10 No. 2 (2023): April 2023

Deteksi Objek Makhluk Hidup dalam Filum Arthropoda Menggunakan YOLOv3

Safarin, Arva Adwitya (Unknown)
Rachmawati, Ema (Unknown)
Kosala, Gamma (Unknown)



Article Info

Publish Date
08 May 2023

Abstract

Abstrak-Makhluk hidup yang berasal dari filum Arthropoda merupakan makhluk hidup yang memiliki beragam karakteristik. Karakteristik tersebut bisa dibedakan dengan melihat ordo dari makhluk hidup tersebut. Beberapa jenis makhluk hidup yang ada dalam filum Arthropoda merupakan makhluk sosial. Oleh karena itu, mereka sering ditemukan berada di lokasi yang sama dan berkerumun. Selain itu, sebagian besar spesies yang ada dalam filum Arthropoda memiliki ukuran tubuh yang kecil. Pada tugas akhir ini, metode yang diajukan adalah YOLOv3. YOLOv3 merupakan metode deteksi objek yang memiliki beberapa pembaruan yang memungkinkan metode tersebut lebih mudah mendeteksi objek yang berkerumun dan memiliki ukuran yang kecil. Untuk mengembangkan sistem pendeteksi makhluk hidup dalam filum Arthropoda menggunakan YOLOv3, terdapat 12.082 data citra yang terbagi dalam 7 (tujuh) kelas untuk melatih model tersebut. Hasil terbaik yang didapatkan saat pengujian memakai 1.544 data uji adalah nilai mAP sebesar 57,6% pada IOU 0,5.Kata kunci - deep learning, deteksi objek, You Only Look Once (YOLO), deteksi makhluk hidup

Copyrights © 2023






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...