SmartComp
Vol 11, No 1 (2022): Smart Comp: Jurnalnya Orang Pintar Komputer

Perbandingan Prediksi Harga Saham Dengan Menggunakan LSTM GRU Dengan Transformer

Idham Idham (Universitas Nusa Mandiri Jakarta)
Muhammad Ghudafa Taufik Akbar (Universitas Nusa Mandiri Jakarta)
Supriadi Panggabean (Universitas Nusa Mandiri Jakarta)
Mohamad Noor (Universitas Nusa Mandiri Jakarta)



Article Info

Publish Date
21 Jan 2022

Abstract

Saham adalah sebuah bukti kepemilikan nilai sebuah perusahaan, artinya pemilik saham adalah pemilik perusahaan . Semakin besar saham yang dimiliki, maka semakin besar kekuasaannya di perusahaan tersebut. Faktor yang terjadi sekarang dalam sektor pasar saham yaitu adanya dampak dari virus corona terhadap indeks harga saham dan arus dana asing ke pasar saham. Maka sangat perlu untuk dilakukan prediksi sentiment analysis pandemi corona terhadap sektor pasar saham untuk melihat bagaimana perbandingan pergerakan IHSG di Indonesia sebelum terjadi pandemi dan pada saat terjadi pandemi Covid-19. Metode yang digunakan untuk prediksi analysis sentimen dengan index harga saham Indonesia ini menggunakan transformers dengan fitur bag of word , TF- IDF dan word embedding. Dari hasil prediksi sebelum menggunakan metode transformers pada LSTM,dan GRU didapatkan rata-rata pada LSTM Performance akurasi 0,394 dan GRU 0,216[1]. Algoritma yang yang digunakan dalam model ini adalah Long short-term memory (LSTM), dan Gated Recurrent Unit (GRU), sedangkan untuk mendapatkan hasil word embedding menggunakan Vector space model. Terdapat 1989 baris data dan 27 atribut, sedangkan untuk akurasi yang dihasilkan setelah melakukan iterasi beberapa kali mendapatkan hasil yang signifikan, performance yang dihasilkan adalah semakin mendekati akurasi yang cukup tinggi. Berdasarkan hasil eksprimen perbandingan performance akurasi antara LSTM dan GRU terhadap penggunaan Transformers, maka terlihat lebih baik performance akurasinya setelah menggunakan transformers pada ketiga model tersebut.Kata kunci: Transformer, GRU, LSTM, TF-IDF, word embedding, bag of word..

Copyrights © 2022






Journal Info

Abbrev

smartcomp

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Smart Comp(p-ISSN: 2089-676X, e-ISSN:2549-0796) is a nationally peer reviewed computer science journal open for researchers from the field of Information Technology, Computer Engineering, Informatics Engineering, Electrical & Electronics Engineering and related researches. Smart Comp has been ...