Masalah yang dihadapi dalam pengelolaan data aktivitas kuliah mahasiswa (AKM) salah satunya dalam menentukan total Satuan Kredit Semester (SKS) dan Indeks Prestasi Kumulatif (IPK) pada mahasiswa non aktif. Dalam melakukan pengelolaan data akademik menjadi informasi sebagai aspek pengambilan keputusan dalam menentukan keaktifan mahasiswa. Beberapa faktor seperti Indek Prestasi Semester (IPS), Jumlah SKS Semester, Indek Prestasi Kumulatif (IPK), Jumlah SKS Total, Biaya dan Status Mahasiswa. Langkah untuk mencegah indikasi mahasiswa non aktif perlu dilakukan analisis pola prediksi untuk menentukan sisa masa studi mahasiswa serta menghasilkan informasi yang akurat dan sebagai bahan prediksi untuk membandingkan data pertahun akademik terhadap mahasiswa non aktif K-NN berbasis Forward Selection. Penelitian prediksi mahasiswa non aktif menggunakan pengujian menggunakan menggunkan Rapid Miner terhadap dataset mahasiswa sebanyak 342, menghasilkan nilai akurasi K-Nearest Neighbor (k-3) sebesar 93,55% dan Forward Selection (k-3) sebesar 99,39%. dari hasil analisis didapatkan data mahasiswa yang akan Drop Out sebesar 1160 sebagai usulan untuk manajemen pada periode pelaporan berikutnya. maka penelitian dapat dikembangkan lebih lanjut untuk penentuan nilai k yang lebih optimal dengan menambahkan aspek klasifikasi status mahasiswa bekerja atau tidak bekerja.
Copyrights © 2021