KLIK: Kajian Ilmiah Informatika dan Komputer
Vol. 4 No. 3 (2023): Desember 2023

Klasifikasi Sentimen Masyarakat di Twitter Terhadap Ganjar Pranowo dengan Metode Support Vector Machine

Syaiful Azhar (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru)
Yusra (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru)
Muhammad Fikry (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru)
Surya Agustian (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru)
Iis Afrianty (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru)



Article Info

Publish Date
22 Dec 2023

Abstract

The classification of public sentiment towards Ganjar Pranowo on Twitter can provide insights into his popularity, support, or criticism. This research aims to classify public sentiment towards Ganjar Pranowo on Twitter using the Support Vector Machine (SVM) method. The research data consists of 4000 tweets collected from Twitter. After undergoing preprocessing, these tweets are classified using SVM into positive or negative classes. The classification method is optimized to produce the most optimal model by testing the influence of feature selection stages and SVM parameter tuning. The data is divided into 80% training (TRAIN_SET) and 20% testing (TEST_SET). The optimal model is validated using 10% of the randomly selected TRAIN_SET for validation data. Sixteen experiments are conducted to explore the optimal model, with the highest validation results (top rank 4 models) tested on the TEST_SET, yielding F1-scores of 84.13%, 84.13%, 84.13%, and 84.13% for experiment IDs 1, 7, 14, and 16, respectively. In this research, SVM proves to be sufficiently effective in classifying sentiment-related tweets about Ganjar Pranowo on Twitter

Copyrights © 2023






Journal Info

Abbrev

klik

Publisher

Subject

Computer Science & IT

Description

Topik utama yang diterbitkan mencakup: 1. Teknik Informatika 2. Sistem Informasi 3. Sistem Pendukung Keputusan 4. Sistem Pakar 5. Kecerdasan Buatan 6. Manajemen Informasi 7. Data Mining 8. Big Data 9. Jaringan Komputer 10. Dan lain-lain (topik lainnya yang berhubungan dengan Teknologi Informati dan ...