Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol 1 No 3 (2023): JNATIA Vol. 1, No. 3, Mei 2023

Klasifikasi Genre Musik Menggunakan Support Vector Machine Berdasarkan Spectral Features

Diputra Wiraguna, I Gusti Agung Ngurah (Unknown)
Putri, Luh Arida Ayu Rahning (Unknown)



Article Info

Publish Date
17 Jul 2023

Abstract

This research focuses on music genre classification based on spectral features and Support Vector Machine (SVM). Features such as Spectral Centroid, Spectral Rolloff, Spectral Flux, and Spectral Bandwidth are extracted from MP3 music audio. The dataset comprising 4 music genres is utilized for training and testing the system. The extracted spectral features are fed into the SVM classifier to predict the genre of test samples. Python and machine learning are both used in developing the system while the experimental results demonstrate the effectiveness of SVM in accurately classifying music genres based on the current extracted features. The proposed approach contributes to automated music genre classification systems, facilitating music organization, recommendation, and retrieval. This research promotes advancements in music information retrieval and enhances user experience in music-related applications. Keywords: Music Feature Extraction, MP3, Music, Spectral Features, SVM

Copyrights © 2023






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) merupakan jurnal yang berfokus pada teori, praktik dan metodologi seluruh aspek teknologi di bidang ilmu dan teknik komputer serta ide-ide produktif dan inovatif terkait teknologi baru dan sistem informasi. Jurnal ini memuat makalah ...