Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol 1 No 4 (2023): JNATIA Vol. 1, No. 4, Agustus 2023

Klasifikasi Emosi Lirik Lagu dengan Long Short Term Memory dan Word2Vec

Fortunawan, I Putu Diska (Unknown)
ER, Ngurah Agus Sanjaya (Unknown)



Article Info

Publish Date
01 Aug 2023

Abstract

This research focuses on the classification of emotions in song lyrics using LSTM (Long Short-Term Memory) and Word2Vec embedding. Emotion classification in lyrics plays a crucial role in music recommendation systems, sentiment analysis, and understanding the affective aspects of music. The study explores the effectiveness of LSTM, a type of recurrent neural network (RNN), in capturing the sequential dependencies and patterns in lyrics, combined with Word2Vec embedding to represent the semantic meaning of words.The dataset consists of a collection of song lyrics labeled with 2 emotions. The lyrics are preprocessed and convertedinto word vectors using the Word2Vec model. The LSTM model is then trained on the preprocessed lyrics data, aiming to predict the corresponding emotion category for a given set of lyrics. Experimental results demonstrate that the proposed approach achieves a maximum accuracy of 72.8% in classifying emotions in song lyrics. The LSTM model leverages the sequential information in the lyrics to capture the emotional context effectively. The Word2Vec embedding enhances the representation of words, allowing the model to understand the semantic relationships between words and better discriminate between different emotional categories. Keywords: TextProcessing, Classification, LSTM, Word2Vec

Copyrights © 2023






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) merupakan jurnal yang berfokus pada teori, praktik dan metodologi seluruh aspek teknologi di bidang ilmu dan teknik komputer serta ide-ide produktif dan inovatif terkait teknologi baru dan sistem informasi. Jurnal ini memuat makalah ...