Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol 1 No 1 (2022): JNATIA Vol. 1, No. 1, November 2022

Implementasi Metode Optimasi Gradient Centralization untuk Pembuatan Model Klasifikasi Citra Pemandangan Alam

Renaisan, Pasha (Unknown)
Astawa, I Gede Santi (Unknown)



Article Info

Publish Date
25 Nov 2022

Abstract

Optimization algorithms are algorithms that are needed to properly train Neural Networks. Optimization algorithms help improve model performance by modifying the attributes of the neural network, such as weights and learning rate to further enchant the model. Gradient Centralization is a new optimization algorithm that optimizes by centralizing gradient vectors to have zero mean. This paper focuses on finding the optimal learning rate for Gradient Centralization and uses that learning rate to create a classification model to classify natural scene images. The optimal learning rate obtained by this research is 2e-5 and the model obtained 84,17% mean recall, 84,39% mean precision, and overall 83,60% accuracy.

Copyrights © 2022






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) merupakan jurnal yang berfokus pada teori, praktik dan metodologi seluruh aspek teknologi di bidang ilmu dan teknik komputer serta ide-ide produktif dan inovatif terkait teknologi baru dan sistem informasi. Jurnal ini memuat makalah ...