G-Tech : Jurnal Teknologi Terapan
Vol 8 No 1 (2024): G-Tech, Vol. 8 No. 1 Januari 2024

Enhancing Respiratory Disease Diagnosis through FMCW Radar and Machine Learning Techniques

Ariana Tulus Purnomo (Sampoerna University, Indonesia)
Raffy Frandito (Sampoerna University, Indonesia)
Edrick Hansel Limantoro (Sampoerna University, Indonesia)
Rafie Djajasoepena (Sampoerna University, Indonesia)
Muhammad Agni Catur Bhakti (Sampoerna University, Indonesia)
Ding-Bing Lin (National Taiwan University of Science and Technology, Taiwan)



Article Info

Publish Date
03 Jan 2024

Abstract

Respiratory diseases require early diagnosis and continuous monitoring, but existing methods involve risky physical contact. This study proposes a new system that uses FMCW radar and machine learning to monitor breathing without contact. FMCW radar can detect respiratory movements in real-time, while machine learning can classify respiratory waveforms. This study evaluates the system with cross-validation Shuffle Split, K-fold, and Stratified K-fold. The results show that Random Forest has the highest accuracy of 94.6% and Naïve Bayes has the shortest time of 0.055 seconds. Shuffle Split performs best overall. This study shows the feasibility and potential of the system for the detection, response, and tracking of respiratory diseases in emergencies.

Copyrights © 2024






Journal Info

Abbrev

g-tech

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Energy Engineering

Description

Jurnal G-Tech bertujuan untuk mempublikasikan hasil penelitian asli dan review hasil penelitian tentang teknologi dan terapan pada ruang lingkup keteknikan meliputi teknik mesin, teknik elektro, teknik informatika, sistem informasi, agroteknologi, ...